C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Complex Analysis

	Subject	Code : 4SC05CAC1	Branch:B.Sc.(Mathematics	;)
	Semeste	r : 5 Date : 21/03/2018	Time : 10:30 To 01:30	Marks: 70
	(2) (3)	ons: Use of Programmable calculator & any oth Instructions written on main answer book a Draw neat diagrams and figures (if necessa Assume suitable data if needed.	re strictly to be obeyed.	hibited.
Q-1	a)	Attempt the following questions: If $f(z) = u + iv$ in polar form is analytic a) $\frac{\partial v}{\partial \theta}$ b) $r \frac{\partial v}{\partial \theta}$		(14) (01)
	b)	A function u is said to be harmonic if an	C) $\frac{1}{r} \frac{\partial v}{\partial \theta}$ d) $-\frac{\partial v}{\partial \theta}$ d) $-\frac{\partial v}{\partial \theta}$	(01)
		a) $u_{xx} + u_{yy} = 0$ b) $u_{xy} + u_{yx} = 0$ c) $u_x + u_y = 0$ d) $u_x^2 + u_y^2 = 0$		
	c)	 The function f(z) = z is non constant a) Analytic function c) Non analytic function 	b) Nowhere analytic functid) Entire function	(01) on
	d)	If $e^{ax} \cos y$ is harmonic then <i>a</i> is		(01)
	e)	 a) i b) 0 The region z > 1 represent a) Exterior of unit disk c) Closed unit disk 	 c) -1 d) 2 b) Open unit disk d) None of these 	(01)
	f)	Transformation $W = \frac{1}{z}$ is known as a) Inversion b) Translation	,	(01)
	g)	The fixed points of the transformation W a) 0,1 b) 0,-1	- / /	(01)
	h)	The bilinear transformation that maps the is $W = $	e points $0, i, \infty$ respectively int	to 0,1,∞ (01)
	i) j) k)	a) $1/z$ b) $-z$ State Liouville's theorem. Write Cauchy-Reimann equation. If $f(z) = x + ay + i(bx + cy)$ is analy	c) $-iz$ d) i	Z (01) (01) (02)
	k) l)	Find the harmonic conjugate of $2x - x^3$		(02)

Attempt any four questions from Q-2 to Q-8

Q-2	a)	Attempt all questions State and prove Cauchy Riemann equation.	(14) (07)
	b)	Show that $(z) = \begin{cases} \sqrt{xy} ; z \neq 0 \\ 0 ; z = 0 \end{cases}$, satisfy Cauchy-Riemann equation but not differentiable at 0.	(07)
Q-3		Attempt all questions	(14)
χv	a)	State and prove Cauchy integral formula.	(06)
	b)	Evaluate $\int_{c}^{1} (x - y + ix^2) dz$, where c along real axis from $z = 0$ to $z = 1$ and	(05)
	,	then the line joining $z = 1$ to $z = 1 + i$.	. ,
	c)	Prove that $f(z) = \overline{z}$ is no where differentiable.	(03)
Q-4	•)	Attempt all questions	(14)
C	a)	State and prove Liouville's theorem.	(05)
	b)	Find analytic function such that $Re(f') = 3x^2 + 4y - 3y^2$ and $f(1 + i) = 0$.	
	c)	Find the value of integral $\int_c \frac{dz}{z^3(z+4)}$ where $c: z = 2$.	(04)
Q-5		Attempt all questions	(14)
	a)	State and prove Morera's theorem	(05)
	b)	Show that $u(x, y) = e^{y}(\cos x + \sin x)$ is harmonic. Find harmonic conjugate of	(05)
		u(x, y) and $f(z)$.	
	c)	Evaluate $\int_c (z - z^2) dz$, where c is the upper half of the circle $ z - 2 = 3$.	(04)
Q-6		Attempt all questions	
	a)	Prove C-R equation in polar form.	(05) (05)
	b)	Function $u = \log r$. If u satisfy $r^2 u_{rr} + r u_r + u_{\theta\theta} = 0$ then u is called harmonic	
		function find its conjugate v .	
~ -	c)	Analytic function of constant modulus is also constant in its domain <i>D</i> .	(04)
Q-7	`	Attempt all questions	(14)
	a) b)	State and prove Cauchy's theorem. 2^{2+3i}	(06)
	b)	Find $\int_{1-i}^{2+3i} (z^2 + z) dz$.	(04)
	c)	State and prove ML inequality.	(04)
Q-8		Attempt all questions	(14)
	a)	Find image of $ z + 1 = 1$ under the transformation $W = \frac{1}{z}$.	(05)
	b)	Find mobious transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ on to	(05)
		$w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	
	c)	Prove that the transformation $(w + 1)^2 = \frac{4}{z}$ transform the unit circle of w – plane	(04)
		into the parabola of z —plane.	

